Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Foods ; 12(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444239

RESUMO

This is the first investigation, conducted in a completely randomized design (CRD), to determine the effects of different salinity levels (75 and 150 mM) and germination periods (3, 4, and 5 days) on momilactone and phenolic accumulations in germinated brown rice (GBR) var. Koshihikari. Particularly, the identification of bioactive compounds was confirmed using electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy (1H and 13C). Momilactone A (MA) and momilactone B (MB) amounts were determined by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS), whereas other compounds were quantified by spectrophotometry and high-performance liquid chromatography (HPLC). Accordingly, GBR under B2 treatment (75 mM salinity for 4 days) showed the greatest total phenolic and flavonoid contents (14.50 mg gallic acid and 11.06 mg rutin equivalents, respectively, per g dry weight). GBR treated with B2 also accumulated the highest quantities of MA, MB, ρ-coumaric, ferulic, cinnamic, salicylic acids, and tricin (18.94, 41.00, 93.77, 139.03, 46.05, 596.26, and 107.63 µg/g DW, respectively), which were consistent with the strongest antiradical activities in DPPH and ABTS assays (IC50 = 1.58 and 1.78 mg/mL, respectively). These findings have implications for promoting the value of GBR consumption and rice-based products that benefit human health.

3.
Plants (Basel) ; 12(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37375984

RESUMO

Salinity is a severe stress that causes serious losses in rice production worldwide. This study, for the first time, investigated the effects of fulvic acid (FA) with various concentrations of 0.125, 0.25, 0.5, and 1.0 mL/L on the ability of three rice varieties, Koshihikari, Nipponbare, and Akitakomachi, to cope with a 10 dS/m salinity level. The results show that the T3 treatment (0.25 mL/L FA) is the most effective in stimulating the salinity tolerance of all three varieties by enhancing their growth performance. T3 also promotes phenolic accumulation in all three varieties. In particular, salicylic acid, a well-known salt-stress-resistant substance, is found to increase during salinity stress in Nipponbare and Akitakomachi treated with T3 by 88% and 60%, respectively, compared to crops receiving salinity treatment alone. Noticeably, the levels of momilactones A (MA) and B (MB) fall in salt-affected rice. However, their levels markedly rise in rice treated with T3 (by 50.49% and 32.20%, respectively, in Nipponbare, and by 67.76% and 47.27%, respectively, in Akitakomachi), compared to crops receiving salinity treatment alone. This implies that momilactone levels are proportional to rice tolerance against salinity. Our findings suggest that FA (0.25 mL/L) can effectively improve the salinity tolerance of rice seedlings even in the presence of a strong salt stress of 10 dS/m. Further studies on FA application in salt-affected rice fields should be conducted to confirm its practical implications.

4.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176833

RESUMO

The important vegetable crop, tomato, is challenged with numerous abiotic and biotic stressors, particularly the newly emerged fungicide-resistant strains of phytopathogenic fungi such as Alternaria alternata, the causal agent of early blight disease. The current study investigated the potential antifungal activity of four cinnamate derivatives including cinnamic acid, ρ-coumaric acid, caffeic acid, and ferulic acid against A. alternata. Our in vitro findings showed that all tested compounds exhibited dose-dependent fungistatic action against A. alternata when their concentrations were increased from 0.1, 0.3, 0.5, and 0.7, to 0.9 mM, respectively. The high concentration of ferulic acid (0.9 mM) completely inhibited the radial mycelial growth of A. alternata and it was comparable to the positive control (difenoconazole fungicide). Additionally, under greenhouse conditions, foliar application of the four tested cinnamates significantly reduced the severity of early blight disease without any phytotoxicity on treated tomato plants. Moreover, it significantly improved the growth traits (plant height, total leaf area, number of leaves per plant, and shoot fresh weight), total chlorophyll, and yield components (number of flowers per plant, number of fruits per plant, and fruit yield) of treated A. alternata-infected plants. Collectively, our findings suggest that cinnamate derivatives could be good candidates as eco-friendly alternatives to reduce the use of chemical fungicides against A. alternata.

5.
J Fungi (Basel) ; 9(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36836358

RESUMO

Sweet pepper (Capsicum annuum L.), also known as bell pepper, is one of the most widely grown vegetable crops worldwide. It is attacked by numerous phytopathogenic fungi, such as Fusarium equiseti, the causal agent of Fusarium wilt disease. In the current study, we proposed two benzimidazole derivatives, including 2-(2-hydroxyphenyl)-1-H benzimidazole (HPBI) and its aluminum complex (Al-HPBI complex), as potential control alternatives to F. equiseti. Our findings showed that both compounds demonstrated dose-dependent antifungal activity against F. equiseti in vitro and significantly suppressed disease development in pepper plants under greenhouse conditions. According to in silico analysis, the F. equiseti genome possesses a predicted Sterol 24-C-methyltransferase (FeEGR6) protein that shares a high degree of homology with EGR6 from F. oxysporum (FoEGR6). It is worth mentioning that molecular docking analysis confirmed that both compounds can interact with FeEGR6 from F. equiseti as well as FoEGR6 from F. oxysporum. Moreover, root application of HPBI and its aluminum complex significantly enhanced the enzymatic activities of guaiacol-dependent peroxidases (POX), polyphenol oxidase (PPO), and upregulated four antioxidant-related enzymes, including superoxide dismutase [Cu-Zn] (CaSOD-Cu), L-ascorbate peroxidase 1, cytosolic (CaAPX), glutathione reductase, chloroplastic (CaGR), and monodehydroascorbate reductase (CaMDHAR). Additionally, both benzimidazole derivatives induced the accumulation of total soluble phenolics and total soluble flavonoids. Collectively, these findings suggest that the application of HPBI and Al-HPBI complex induce both enzymatic and nonenzymatic antioxidant defense machinery.

6.
Front Biosci (Landmark Ed) ; 27(11): 314, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36472117

RESUMO

Aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, mercury, nickel, thallium, titanium, zinc, carbon tetrachloride, phthalates, glyphosate, alcohol, drugs, and herbs are under discussion having the potential to injure the human liver, but allocation of the injury to the hepatotoxicant as exact cause is difficult for physicians and requires basic clinical knowledge of toxicology details. Liver injury occurs at a variable extent depending on the dose, mostly reproducible in animal models that allow studies on molecular steps leading to the hepatocellular injury. These exogenous hepatotoxins may cause an overproduction of reactive oxidative species (ROS), which are generated during microsomal or mitochondrial oxidative stress from incomplete oxygen split and trigger the injury if protective antioxidant capacities are reduced. Primary subcelluar target organelles involved are liver mitochondria through lipid peroxidation of membrane structures and the action of free radicals such as singlet radical 1O2, superoxide radical HO•2, hydrogen peroxide H2O2, hydroxyl radical HO•, alkoxyl radical RO•, and peroxyl radical ROO•. They attempt covalent binding to macromolecular structural proteins. As opposed to inorganic chemicals, liver injury due to chemicals with an organic structure proceedes via the hepatic microsomal cytochrome P450 with its different isoforms. In sum, many exogenous chemicals may have the potential of liver injury triggerd by overproduced ROS leading primarily to impairment of mitochondial functions in the course of structural mitochondial membrane dearrangement. As clinical data were often incomplete, future clinical prototols should focus on meeting liver injury criteria, exclusion of alternative causes, a robust causality evaluation management, and obtaining liver histology if clinically indicated and of benefit for the patient.


Assuntos
Hidrocarbonetos Halogenados , Metais Pesados , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Metais Pesados/toxicidade , Etanol/metabolismo , Fígado/metabolismo , Estresse Oxidativo
7.
Foods ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496697

RESUMO

The aqueous extract of kava (Piper methysticum) root is known as a traditional beverage for daily intake in the Western Pacific Islands, such as Fiji, Tonga, and Vanuatu, to induce relaxation and health-beneficial effects. In this study, the antioxidant, anti-hyperuricemia, and antibacterial properties of kava root were investigated through the isolation and purification of bioactive compounds in ten fractions separated by column chromatography (CC). They included six flavonoids, 5-hydroxy-4',7-dimethoxyflavanone (C1), matteucinol (C2), isosakuranetin (C3), 5,7- dimethoxyflavanone (C4), 2',4'-dihydroxy-6'-methoxydihydrochalcone (in MC5) and alpinetin (C10), and seven kavalactones, 5,6-dehydrokawain (DK) (in MC5 and C6), kavain (in MC7), yangonin (in MC7 and C8), dihydro-5,6-dehydrokavain (DDK) (in MC9), 7,8-dihydromethysticin (in MC9), dihydromethysticin (in MC9), methysticin (in MC9). The chemical structures of the compounds were illustrated by the analyses of gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), nuclear magnetic resonance (1H and 13C-NMR), and X-ray diffraction. The evaluation of the free radical scavenging activity of the isolated substances via the DPPH and ABTS assays revealed that C3 (IC50: ABTS = 76.5; DPPH = 74.8 µg/mL) possessed the strongest antioxidant property. In terms of anti-hyperuricemia activity evaluated via the xanthine oxidase inhibitory in vitro assay, the compound C10 was the most promising inhibitor, revealing an IC50 of 134.52 µg/mL. The two kavalactone mixtures in MC5 and a pure compound C6 inhibited the growth of bacteria Listeria monocytogenes, while MC7 can constrain the development of Klebsiella pneumoniae. This is the first study to isolate, purify, and identify the flavonoids isosakuranetin, 2',4'-dihydroxy-6'-methoxydihydrochalcone and alpinetin in kava root and report their pharmaceutical potential. The identified bioactive compounds showed potent antioxidant, anti-hyperuricemia, and antibacterial activity and thus can enhance the value of beverages and foods derived from kava root.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36498242

RESUMO

Lithium-ion batteries (LIBs) have become a hot topic worldwide because they are not only the best alternative for energy storage systems but also have the potential for developing electric vehicles (EVs) that support greenhouse gas (GHG) emissions reduction and pollution prevention in the transport sector. However, the recent increase in EVs has brought about a rise in demand for LIBs, resulting in a substantial number of used LIBs. The end-of-life (EoL) of batteries is related to issues including, for example, direct disposal of toxic pollutants into the air, water, and soil, which threatens organisms in nature and human health. Currently, there is various research on spent LIB recycling and disposal, but there are no international or united standards for LIB waste management. Most countries have used a single or combination methodology of practices; for instance, pyrometallurgy, hydrometallurgy, direct recycling, full or partial combined recycling, and lastly, landfilling for unnecessary waste. However, EoL LIB recycling is not always easy for developing countries due to multiple limitations, which have been problems and challenges from the beginning and may reach into the future. Laos is one such country that might face those challenges and issues in the future due to the increasing trend of EVs. Therefore, this paper intends to provide a future perspective on EoL LIB management from EVs in Laos PDR, and to point out the best approaches for management mechanisms and sustainability without affecting the environment and human health. Significantly, this review compares the current EV LIB management between Laos, neighboring countries, and some developed countries, thereby suggesting appropriate solutions for the future sustainability of spent LIB management in the nation. The Laos government and domestic stakeholders should focus urgently on specific policies and regulations by including the extended producer responsibility (EPR) scheme in enforcement.


Assuntos
Lítio , Gerenciamento de Resíduos , Humanos , Fontes de Energia Elétrica , Reciclagem , Íons
9.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230771

RESUMO

This is the first study clarifying the cytotoxic mechanism of momilactones A (MA) and B (MB) on acute promyelocytic leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines. Via the MTT test, MB and the mixture MAB (1:1, w/w) exhibit a potent cytotoxicity on HL-60 (IC50 = 4.49 and 4.61 µM, respectively), which are close to the well-known drugs doxorubicin, all-trans retinoic acid (ATRA), and the mixture of ATRA and arsenic trioxide (ATRA/ATO) (1:1, w/w) (IC50 = 5.22, 3.99, and 3.67 µM, respectively). Meanwhile MB, MAB, and the standard suppressor doxorubicin substantially inhibit U266 (IC50 = 5.09, 5.59, and 0.24 µM, respectively). Notably, MB and MAB at 5 µM may promote HL-60 and U266 cell apoptosis by activating the phosphorylation of p-38 in the mitogen-activated protein kinase (MAPK) pathway and regulating the relevant proteins (BCL-2 and caspase-3) in the mitochondrial pathway. Besides, these compounds may induce G2 phase arrest in the HL-60 cell cycle through the activation of p-38 and disruption of CDK1 and cyclin B1 complex. Exceptionally, momilactones negligibly affect the non-cancerous cell line MeT-5A. This finding provides novel insights into the anticancer property of momilactones, which can be a premise for future studies and developments of momilactone-based anticancer medicines.

10.
Plants (Basel) ; 11(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145818

RESUMO

Sweet pepper (Capsicum annuum L.) is one of the most widely produced vegetable plants in the world. Fusarium wilt of pepper is one of the most dangerous soil-borne fungal diseases worldwide. Herein, we investigated the antifungal activities and the potential application of two chalcone derivatives against the phytopathogenic fungus, Fusarium equiseti, the causal agent of Fusarium wilt disease in vitro and in vivo. The tested compounds included 3-(4-dimethyl amino-phenyl)-1-{6-[3-(4 dimethyl amino-phenyl)-a cryloyl]-pyridin-2-yl}-propanone (DMAPAPP) and its metal complex with ruthenium III (Ru-DMAPAPP). Both compounds had potent fungistatic activity against F. equiseti and considerably decreased disease progression. The tested compounds enhanced the vegetative growth of pepper plants, indicating there was no phytotoxicity on pepper plants in greenhouse conditions. DMAPAPP and Ru-DMAPAPP also activated antioxidant defense mechanisms that are enzymatic, including peroxidase, polyphenole oxidase, and catalase, and non-enzymatic, such as total soluble phenolics and total soluble flavonoids. DMAPAPP and Ru-DMAPAPP also promoted the overexpression of CaCu-SOD and CaAPX genes. However, CaGR and CaMDHAR were downregulated. These results demonstrate how DMAPAPP and Ru-DMAPAPP could be employed as a long-term alternative control approach for Fusarium wilt disease as well as the physiological and biochemical mechanisms that protect plants.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35886307

RESUMO

Municipal solid waste (MSW) management is one of the utmost challenges for Cambodia's city and district centers. The unsound management of MSW has detrimentally affected the environment and human health. In the present study, an attempt has been made to provide a comprehensive insight into the generation and characteristics, policies and legislation frameworks, management arrangement, collection, treatment, and disposal of MSW. The experience of developed and developing countries and the challenges and priorities of MSW management in Cambodia are also highlighted. In Cambodia, about 4.78 million tons of MSW were generated in 2020, with a 0.78 kg/capita/day generation rate. Only 86% of cities and districts have access to MSW collection services. The current practice of MSW management is reliance on landfill (44%). There are 164 landfills operating countrywide, receiving about 5749 tons of MSW per day. Recycling, incineration, and composting share 4%, 4%, and 2% of MSW generation, respectively. In 2021, the total revenue that was recovered from recyclables was USD 56M. The study concludes several major challenges and proposes valuable suggestions, which may be beneficial for the improvement of the current system to support the sustainable management of MSW in Cambodia.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Camboja , Cidades , Humanos , Incineração , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos
12.
Molecules ; 27(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408706

RESUMO

This is the first study to examine the effects of in vitro digestion on biological activities of Sargassum spp., a broadly known brown seaweed for therapeutic potential. Three fractions (F1-F3) were obtained from hexane extract by column chromatography. Under in vitro simulated digestion, the anti-α-amylase capacity of F1 in oral and intestinal phases increases, while it significantly decreases in the gastric phase. The α-amylase inhibition of F2 promotes throughout all digestive stages while the activity of F3 significantly reduces. The cytotoxic activity of F1 against U266 cell-line accelerates over the oral, gastric, and intestinal stages. The fractions F2 and F3 exhibited the declined cytotoxic potentialities in oral and gastric phases, but they were strengthened under intestinal condition. Palmitic acid and fucosterol may play an active role in antidiabetic and cytotoxic activity against multiple myeloma U266 cell line of Sargassum spp. However, the involvement of other phytochemicals in the seaweed should be further investigated.


Assuntos
Sargassum , Alga Marinha , Digestão , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos , Sargassum/química , alfa-Amilases
13.
Molecules ; 27(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35408721

RESUMO

Callerya speciosa is widely distributed in tropical and subtropical countries and is traditionally used for preventing numerous disorders. In this study, a bioguided fractionation of ethyl acetate extract (SE) from C. speciosa root was carried out to target antioxidant and cytotoxic activities. Of the four fractions (SE1-SE4) obtained by column chromatography, SE4 had the strongest anti-radical ability in the DPPH and ABTS assays (IC50 = 0.05 and 0.17 mg/mL, respectively), with results close to butylated hydroxytoluene (BHT), a common antioxidant agent. The cytotoxic activities against the selected cells were analyzed in this study by MTT assay. Accordingly, SE2, SE3, and SE4 significantly inhibited the viability of multiple myeloma cell lines, comprising U266 (IC50 = 0.38, 0.09, and 0.11 mg/mL, respectively) and KMS11 (IC50 = 0.09, 0.17, and 0.15 mg/mL, respectively), mantle cell lymphoma Mino (IC50 = 0.08, 0.16, and 0.15 mg/mL, respectively), and the noncancerous cell line LCL (IC50 = 0.40, 0.32, and 0.21 mg/mL, respectively). At a concentration of 125 µg/mL, SE2, SE3, and SE4 induced the cell apoptosis of U266 (32.2%, 53.2%, and 55.6%, respectively), KMS11 (36.9%, 40.8%, and 47.9%, respectively), Mino (36.6%, 39.8%, and 22.0%, respectively), and LCL (12.4%, 17.5%, and 23.5%, respectively) via annexin V assay. The dominant compounds detected in fractions by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), were identified as isoflavones. This is the first report describing C. speciosa as a promising natural source of antileukemia and antimyeloma agents, which may be useful for the development of blood cancer treatments.


Assuntos
Fabaceae , Linfoma , Mieloma Múltiplo , Adulto , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Linfoma/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164038

RESUMO

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Clausena/química , Supressores da Gota/uso terapêutico , Hipoglicemiantes/uso terapêutico , Leucemia/tratamento farmacológico , Magnoliaceae/química , Óleos Voláteis/uso terapêutico , Zanthoxylum/química , Humanos , Óleos Voláteis/química
15.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885832

RESUMO

Celastrus hindsii is a popular medicinal plant in Vietnam and Southeast Asian countries as well as in South America. In this study, an amount of 12.05 g of an α-amyrin and ß-amyrin mixture was isolated from C. hindsii (10.75 g/kg dry weight) by column chromatography applying different solvent systems to obtain maximum efficiency. α-Amyrin and ß-amyrin were then confirmed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR). The antioxidant activities of the α-amyrin and ß-amyrin mixture were determined via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays with IC50 of 125.55 and 155.28 µg/mL, respectively. The mixture exhibited a high potential for preventing gout by inhibiting a relevant key enzyme, xanthine oxidase (XO) (IC50 = 258.22 µg/mL). Additionally, an important enzyme in skin hyperpigmentation, tyrosinase, was suppressed by the α-amyrin and ß-amyrin mixture (IC50 = 178.85 µg/mL). This study showed that C. hindsii is an abundant source for the isolation of α-amyrin and ß-amyrin. Furthermore, this was the first study indicating that α-amyrin and ß-amyrin mixture are promising in future therapies for gout and skin hyperpigmentation.


Assuntos
Antioxidantes/farmacologia , Celastrus/química , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Ácido Oleanólico/análogos & derivados , Triterpenos Pentacíclicos/isolamento & purificação , Folhas de Planta/química , Xantina Oxidase/antagonistas & inibidores , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Gasosa-Espectrometria de Massas , Monofenol Mono-Oxigenase/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Triterpenos Pentacíclicos/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Xantina Oxidase/metabolismo
16.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638760

RESUMO

Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.


Assuntos
Hepatopatia Veno-Oclusiva , Hepatócitos , Falência Hepática Aguda , Transplante de Fígado , Fígado , Alcaloides de Pirrolizidina/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatopatia Veno-Oclusiva/induzido quimicamente , Hepatopatia Veno-Oclusiva/metabolismo , Hepatopatia Veno-Oclusiva/patologia , Hepatopatia Veno-Oclusiva/cirurgia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Falência Hepática Aguda/cirurgia
17.
J Fungi (Basel) ; 7(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34436201

RESUMO

Tomato early blight, caused by Alternaria solani, is a destructive foliar fungal disease. Herein, the potential defensive roles of benzoic acid (BA) and two of its hydroxylated derivatives, ρ-hydroxybenzoic acid (HBA), and protocatechuic acid (PCA) against A. solani were investigated. All tested compounds showed strong dose-dependent fungistatic activity against A. solani and significantly reduced the disease development. Benzoic acid, and its hydroxylated derivatives, enhanced vegetative growth and yield traits. Moreover, BA and its derivatives induce the activation of enzymatic (POX, PPO, CAT, SlAPXs, and SlSODs) and non-enzymatic (phenolics, flavonoids, and carotenoids) antioxidant defense machinery to maintain reactive oxygen species (ROS) homeostasis within infected leaves. Additionally, BA and its hydroxylated derivatives induce the accumulation of salicylic acid (SA) and its biosynthetic genes including isochorismate synthase (SlICS), aldehyde oxidases (SlAO1 and SlAO2), and phenylalanine ammonia-lyases (SlPAL1, SlPAL2, SlPAL3, SlPAL5, and SlPAL6). Higher SA levels were associated with upregulation of pathogenesis-related proteins (SlPR-1, SlPR1a2, SlPRB1-2, SlPR4, SlPR5, SlPR6), nonexpressor of pathogenesis-related protein 1 (SlNPR1), and salicylic acid-binding protein (SlSABP2). These findings outline the potential application of BA and its hydroxylated derivatives as a sustainable alternative control strategy for early blight disease and also deciphering the physiological and biochemical mechanisms behind their protective role.

18.
Rice (N Y) ; 14(1): 52, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110541

RESUMO

BACKGROUND: Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. RESULTS: We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. CONCLUSIONS: We showed how the rice diversity within Vietnam relates to the wider Asian rice diversity by using a number of approaches to provide a clear picture of the novel diversity present within Vietnam, mainly around the Indica-5 subpopulation. Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of low input sustainable and climate resilient rice.

19.
Medicines (Basel) ; 7(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121132

RESUMO

Background: Clausena indica fruit is commonly used for food ingredients and traditional medicines in tropical countries, however, information about its biological activities and chemical profiles has been inadequately reported. Methods: In this study, a bio-guided fractionation of antioxidants and α-amylase inhibitors from hexane (MH) and ethyl acetate (ME) extracts of C. indica fruit (pericarp and seed) was carried out. Eleven fractions from MH (D1-D11) and 17 fractions from ME (T1-T17) were obtained from column chromatography over silica gel, which were then examined for anti-radical capacity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, and pancreatic α-amylase inhibition, a key enzyme linked to type 2 diabetes. Results: Of isolated fractions, the fraction T4 revealed the most potent anti-DPPH activity (IC50 = 0.13 mg/mL), whereas T2 exhibits the strongest ABTS cation scavenging ability (IC50 = 0.31 mg/mL). In the enzymatic assay, the fractions D3 and T4 significantly inhibit the α-amylase reaction with IC50 values of 0.34 and 0.86 mg/mL, respectively. Remarkably, α-amylase suppression of T4 is close to acarbose and over four times stronger than palmitic acid, which are the well-known α-amylase inhibitors (IC50 = 0.07 and 1.52 mg/mL, respectively). The active constituents from fractions were identified by gas chromatography-mass spectrometry (GC-MS). The results show that the fraction D3 contains five major compounds, which are grouped in five classes consisting of fatty acids, phenols, benzodioxoles, alcohols, and sesquiterpenes. Among them, palmitic acid is the most dominant compound (32.64%), followed by 2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol (16.69%). Whilst, six major compounds belonging to fatty acid and coumarin classes are identified in the fraction T4. The most abundant compound in T4 is dentatin (47.32%), followed by palmitic acid (15.11%). Conclusions: This is the first finding that C. indica fruit can be a promising source for the development of natural antioxidant and antidiabetic agents. Additionally, the outcome reveals that dentatin, a known natural antineoplastic agent, can be feasibly exploited from C. indica fruit.

20.
Plants (Basel) ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396235

RESUMO

Andropogon virginicus is an invasive weed that seriously threatens agricultural production and economics worldwide. In this research, dried aerial parts of A. virginicus were extracted, applying Soxhlet and liquid-liquid phase methods to acquire the total crude (T-Anvi), hexane (H-Anvi), ethyl acetate (E-Anvi), butanol (B-Anvi), and water (W-Anvi) extracts, respectively. In which, T-Anvi contains the highest total phenolic and flavonoid contents (24.80 mg gallic acid and 37.40 mg rutin equivalents per g dry weight, respectively). Via anti-radical (ABTS and DPPH), and reducing power assays, E-Anvi exhibits the most potent activities (IC50 = 13.96, 43.59 and 124.11 µg/mL, respectively), stronger than butylated hydroxytoluene (BHT), a standard antioxidant, while the lipid peroxidation inhibitory effect of E-Anvi (LPI = 90.85% at the concentration of 500 µg/mL) is close to BHT. E-Anvi shows the most substantial inhibition (IC50 = 2.58 mg/mL) on tyrosinase. Notably, α-amylase is significantly suppressed by H-Anvi (IC50 = 0.72 mg/mL), over twice stronger than the positive control, palmitic acid. In the cytotoxic assay, E-Anvi is the strongest extract inhibiting K562 cells (IC50 = 112.01 µg/mL). Meanwhile, T-Anvi shows the highest prevention on Meg-01 expansion (IC50 = 91.40 µg/mL). Dominant compounds detected in E-Anvi by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) are identified as flavonoids. However, among four major compounds identified in H-Anvi by gas chromatography-mass spectrometry (GC-MS), palmitic acid and phytol are the most abundant compounds with peak areas of 27.97% and 16.42%, respectively. In essence, this is the first report describing that A. virginicus is a potential natural source of antioxidants, tyrosinase and α-amylase inhibitors, and anti-chronic myeloid leukemia (CML) agents which may be useful in future therapeutics as promising alternative medicines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...